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ABSTRACT 

This report describes algorithms which make use of polarimetric radar 
information in the detection and discrimination of targets in a ground clut- 
ter background. The optimal polarimetric detector (OPD) is derived; this 
algorithm processes the complete polarization scattering matrix (PSM) and 
provides the best possible detection performance from polarimetric radar 
data. Also derived is the best linear polarimetric detector, the polari- 
metric matched filter (PMF), and the structure of this detector is related 
to simple polarimetric target types.  New polarimetric target and clutter 
models are described; these models are used to predict the performance of 
the OPD and the PMF. The performance of these algorithms is compared with 
that of simpler detectors that use only amplitude information to detect 
targets.  Finally, the ability to discriminate between target types by ex- 
ploiting differences in polarimetric scattering properties is discussed. 
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1. EXECUTIVE SUMMARY 

Under DARPA sponsorship, M.I.T. Lincoln Laboratory is conducting a 
broad-based research effort to (1) develop an understanding of the phenome- 
nology of polarimetric radar data and (2) relate this phenomenology to the 
performance results achievable by target detection and classification al- 
gorithms that use polarimetric data. In order to develop the mathematical 
framework from which optimal polarimetric detectors and classifiers can be 
derived, a clear understanding of the underlying polarimetric phenomenology 
is necessary. This understanding is also necessary for predicting and 
analyzing the performance of various polarimetric detectors and classi- 
fiers. This, in turn, will allow the development of viable stationary tar- 
get detection and classification systems. Such systems have application in 
surveillance, fire control, and missile-seeker systems. This report summa- 
rizes some of the recent work in the area of stationary target detection 
and classification using polarimetric radar information. 

To investigate the detection and classification performance improve- 
ment achievable through the use of fully polarimetric radar data, statisti- 
cal models of targets and clutter were first developed based on available 
polarimetric target and clutter data. From these models, new algorithms 
were derived for optimal processing of the polarimetric radar data. These 
new algorithms, the optimal polarimetric detector (OPD) and polarimetric- 
matched filter (PMF), were compared with a variety of non-polarimetric 
algorithms which use only single-polarimetric-channel returns to detect 
targets. Detection performance predictions for radars using circularly 
polarized data were also presented. 

Based upon a limited polarimetric clutter data base and a target data 
base of turntable measurements, our performance predictions show that the 
target detection performance achievable using the OPD or the PMF is not 
significantly better than that which is achievable using simpler, single- 
polarimetric-channel radar detectors. Furthermore, to implement the OPD or 
PMF requires prior knowledge of target and clutter statistics; this would 
be difficult, since clutter statistics vary widely and are highly unpre- 
dictable. 

Although polarization information may not improve detection perfor- 
mance, it may be useful in target classification. Some target types have 
distinctive polarimetric scattering properties. Preliminary studies using 
an optimal polarimetric classifier suggest that the polarimetric properties 
could be exploited to discriminate among target types (e.g., armored tar- 
gets vs. trucks). 

It is again emphasized that the clutter data base which the results of 
this report are based on is very limited; a more comprehensive set of 
measurements of various clutter types (e.g., snow-covered terrain) must be 
obtained and analyzed. In the very near future we plan to collect this 



comprehensive clutter data base using the Advanced Detection Technology 
Sensor (ADTS), and to verify the tentative conclusions of this report using 
the new data base. The mathematical framework necessary to perform these 
future studies is provided in this report, along with the new polarimetric 
detection and classification algorithms for optimally processing the fully 
polarimetric radar data. 

1.1 INTRODUCTION 

The detection of stationary targets in ground clutter is an important 
problem for both strategic and tactical applications. In an earlier pro- 
gram, the Hostile Weapons Location System (HOWLS) Program [1, 2], M.I.T. 
Lincoln Laboratory investigated the detection performance that could be 
achieved using a single-polarimetric-channel radar with a resolution on the 
order of the size of a typical target (10 m by 10 m). The radar employed 
pulse-to-pulse frequency diversity; this was used to obtain independent 
samples of targets and clutter which could then be noncoherently inte- 
grated. Statistical target and clutter models based on analysis of the 
collected radar data were developed. These models were used to develop 
performance predictions for various non-polarimetric detection algorithms. 
These predictions were found to agree reasonably well with the performance 
achieved by the actual algorithms. 

Could HOWLS detection performance have been improved if the radar had 
been fully polarimetric, and if the full polarization scattering matrix 
(PSM) had been used in the detection algorithms? This report addresses 
that question. 

To measure the full PSM, a radar must transmit two orthogonal polari- 
zations at each frequency. Therefore, in this report we assume horizontal 
polarization is transmitted first and two linear orthogonal polarizations 
(denoted HH and HV) are received. Next, vertical polarization is trans- 
mitted and two linear orthogonal polarizations (denoted VV and VH) are re- 
ceived. By reciprocity VH = HV, and therefore the three complex elements 
HH, HV, and VV comprise the total information contained in the polarization 
scattering matrix. For multi-look algorithms, successive independent PSM 
measurements are obtained using frequency diversity. 

In order to investigate the possible contribution to detection from 
the fully polarimetric data, we extended the target and clutter statistical 
models to the fully polarimetric case. Then we developed detection algo- 
rithms which use this information. Finally, we developed formulas for pre- 
dicting the performance of these algorithms, and used these formulas to 
evaluate and compare the various detection algorithms. 

In Section 2 we introduce the basic polarimetric measurement model and 
develop homogeneous statistical models of targets and clutter. These sta- 
tistical models are used to evaluate the predicted performance of various 
polarimetric and non-polarimetric detection algorithms. 



In Section 3 we use these homogeneous target and clutter models to de- 
rive the optimal polarimetric detector (OPD). This algorithm reveals the 
structure of the detector which yields the best performance under ideal 
conditions; that is, it provides an upper bound on detection performance 
for the homogeneous case. 

Section 4 develops the concept of a polarimetric matched filter (PMF). 
This is the linear processor that processes the complex polarimetric re- 
turns (HH, HV and VV) so as to provide maximum target-to-clutter ratio to 
the detector. A useful interpretation of the solution of the PMF is shown 
to correspond to simple dihedral and trihedral reflector types. 

In Section 5 we present several alternative detection algorithms. 
These algorithms are suboptimal because they ignore some of the polari- 
metric information; they are, however, independent of the parameters of the 
target and clutter whereas the OPD and the PMF require exact knowledge of 
the target and clutter statistics. The algorithms considered include the 
polarimetric span and various single-polarimetric-channel detectors. 

Section 6 develops more realistic target and clutter models.  In this 
section it is assumed that clutter is spatially nonhomogeneous and that 
target returns vary with aspect angle.  Random polarimetric target and clut- 
ter models having a product-model structure are postulated; such models are 
consistent with these more realistic assumptions.  The exact probability 
density function (PDF) for product-model targets and clutter is derived; 
these PDFs are used to obtain the optimal 1 ike1ihood-ratio detector for 
product-model targets and clutter. 

Section 7 develops the mathematical formulas used for predicting the 
performance of various detection algorithms introduced in Sections 3, 4, 
and 5. The analysis uses the product-model characterizations of targets 
and clutter developed in Section 6. The detection algorithms analyzed in- 
clude the OPD, the PMF, and single-polarimetric-channel detectors.  In 
these analyses the performance predictions for homogeneous targets and 
clutter are obtained as a special case of the more general product-model 
solution. 

Section 8 introduces the concept of a radar which uses a single- 
transmit, dual-receive configuration with a circular polarization basis. 
This scheme is predicated on the empirical observation that armored targets 
tend to have a significant amount of even-bounce (LL) return whereas clut- 
ter tends to have mostly odd-bounce (LR) return.  Thus, circular polariza- 
tion is used to take advantage of this difference. Section 8 parallels the 
previous sections 3 through 7.  That is, for this circular polarization 
case, an OPD and PMF are derived, as well as alternative suboptimal de- 
tectors. Then the product-model characterizations of targets and clutter 
are used to derive formulas for performance predictions of the various 
algorithms. 



Finally, in Section 9 a comparison of the detection performance of 
various polarimetric and non-polarimetric detectors is presented. The com- 
parisons presented include (1) a comparison of the OPD, span and single- 
channel | HH | 2 detectors, (2) a comparison of the PMF and single-channel 
| HH | *  and | LL | z detectors, and (3) a comparison of the OPD and dual- 
circular detection algorithms. Also, we examine the performance of the OPD 
when it is used as a target classifier. 

Section 10 summarizes the findings of these studies and describes some 
possible future study efforts. 



2. THE BASIC POLARIMETRIC MEASUREMENT MODEL 

This section describes the basic mathematical modeling of targets and 
clutter used in our studies. These models are used in the later sections 
to derive the optimal polarimetric detector and the polarimetric matched 
filter. 

where 
We express the radar return as the polarimetric feature vector X, 

X = 

HHi + jHHq" ^HH 

HVi + jHVq = HV 

vvi + jVV VV 

(1) 

Each complex element HH, HV, and VV is modeled as having a complex- 
Gaussian probability density function (PDF). The joint PDF of vector X is 
given by the expression 

f(X) = 1 exp 
t -1 

xTx x (2) 

where X = E{X X } is the covariance of the polarimetric feature vector. 
The data have a zero-mean (EjX} = 0). Thus, the complete characterization 
of the jointly Gaussian complex elements HH, HV, and VV is given in terms 
of an appropriate covariance matrix X. The covariance matrices which we 
use for target and clutter data (in a linear polarization basis) are [3, 4] 
of the form 

X = a 

1     0    p/r 

0        6        0 

p*/^  o   r 

(3) 



where   a        =    E{ HH  },  e =  ; : , 1    =  ; ;     K*> 11   ' '        E{ | HH | 2}        Ef | HH | *} 

E{HH VV*} 
and     p/T    =    — s— 

Ef | HH | -} 

The clutter covariance is specified by four parameters (a  , e , 1  , p ) and 

the target covariance is also specified by four parameters (a., e. , 1. , p.). 

Also, since the target is in a clutter background, the measured target data 
are modeled (by superposition) as 

K+    = X + X (5) -t+c  -t  -c v ' 

This implies that the target-plus-clutter data are also zero-mean and 
complex-Gaussian with covariance 

Vc = \ + lc ^ 

and thus has the same structure as given in Equation (3) above, with 

t+c t       c 

e 
Vt * Vc 

t+c Vc 
(7) 

r Vt+ Vc 
t+c Vc 

pt+V
r 

/ 
Vt/rt + Vc/rc 

t+CK      t+C Itl t+c 

Finally, the input target-to-clutter ratio is defined 

a 

r c 
eve),,'-£ (8) 



3. THE OPTIMAL POLARIMETRIC DETECTOR 

In this section we will derive the optimal polarimetric detector (OPD) 
for the ideal situation, that is, assuming the parameters (a, e, T, p) and 
the target-to-clutter ratio (T/C). are known exactly. The algorithm we 

obtain will reveal the structure of the detector that provides the best 
possible detection performance achievable under ideal conditions. The per- 
formance of this ideal optimal detector will provide an upper bound against 
which other polarimetric and non-polarimetric detection schemes can be com- 
pared. For our two-class problem (i.e., target-plus-clutter versus clut- 
ter) the likelihood ratio test for the presence of a target is [5] 

f(X | Vc} 

  > T (91 
f(x|-c)       D () 

where we denote the target-plus-clutter class by w   and the clutter only 

class by w . Tn is the detection threshold.  Th J     c   D 
shown [4] to be a quadratic detector of the form 

class by u . Tn is the detection threshold.  The likelihood ratio has been 

K+c 
X' X - S+J c   t+c OX • In -y-^-y > In TQ (10) 

Substituting particular covariance matrices defining two classes (target- 
plus-clutter and clutter in our examples) into the above algorithm yields 
an interesting result. Rewriting the above solution in a slightly differ- 
ent form, the optimal detector uses the distances to the target-plus- 
clutter class and the clutter class in the following test: 

dcW - dt+c^ 
>  1n TD ("> 

where d (X) = xV*X + In | X | (12) 

and \+cW  = ^Xt+c -X- + lr I VKJ <13) 

Evaluating the above distance measures, one obtains an expression for the 
detection statistic [6] 



HH I 2 I VV I 2      I HV I 2 

d^>=^I-I^I-) + ..a-iP,!^ + i?r (14) 

p
i I HH | | VV | cos (*  - *  - # ) 

^d -i Pi i2) A 

+ In cr^r^l - | P. | 2)  ; i = c, t + c 

where •„„, (>wV, and # are the phase terms of the complex quantities HH, 

VV, and p., respectively. The fundamental structure of the optimal polari- 

metric detector makes use of the polarimetric amplitude information ( | HH | , 
| HV | , | VV | ); the detector also makes use of the polarimetric phase dif- 

ference (0iiu - *ww)> which corresponds to the difference in phase between 

the HH and VV complex returns. The OPD applies optimal weighting [as shown 
in Equation (14) above] to the observed radar measurement data prior to 
making its detection decision. 

8 



4. THE POLARIMETRIC MATCHED FILTER 

In the previous section of the report we defined the two-class target 
detection problem and derived the detection algorithm which makes optimal 
use of the observed polarimetric return. This algorithm is optimal in the 
1ikelihood-ratio sense; that is, it yields the best possible probability of 
detection (Pn) for a given false alarm probability (PpA)- An alternative 

approach is to design a linear processor or matched filter, which processes 
the polarimetric return so as to provide maximum target-to-clutter ratio to 
the radar detector. We will call this algorithm a polarimetric matched 
filter (PMF); it is easily derived using the approach given in Reference 7. 
A brief derivation of this detector is given below. 

Again the assumption is that we have two classes (the target-plus- 
clutter class and the clutter class) but we now seek the best set of linear 
weighting coefficients for processing the polarimetric data vector.  That 

is, we seek the linear combination y = h x which provides the maximum 
target-to-clutter ratio at the filter output. This ratio is given by 

hVh 
^out " V^ <15> 

hTi: h - c- 

The polarimetric matched filter makes use of the target and clutter covari- 
ances I.   and I  . This implies a design which is independent of the actual 

input target-to-clutter ratio; i.e., the PMF is a constant-coefficient 
filter. 

It is well known [7] that the optimal weight vector, denoted h , is 
obtained as the solution to the generalized eigenvalue problem 

X.h* = \*I  h* (16) t-     c— 

where h* is the eigenvector corresponding to the maximum eigenvalue, X , 
Also, the maximum eigenvalue X*is actually the optimal target-to-clutter 
ratio out of the filter which is obtained as a result of using the optimal 
h*. Equivalently, one may obtain the (X*, h*) solution by solving the 
following simpler eigenvalue-eigenvector problem: 

E~\ h* = XV (17) c t -    - v  ' 

It is more convenient to solve this equivalent eigenvalue problem since the 
structure of the matrix I I    is simple and easily leads to an exact ana- 
lytical solution. 



Specifically, we find 

c t 

e (r - ft ffP  PJ cv c J   cJ   tKCKt' 

e (p. ff-o   ft) cVKV t Kc/ c' 

•t('-'c»r< 

e (t fts.Pt.-f*. ft 9  ) cv c/ tKt ty cKc' 

Cv t , Vcpt> 

o  (l-p2)e r 
cv 'c' c c 

(18) 

Although the above matrix is not symmetric, it has been shown [7] that the 
eigenvalues are all positive. In evaluating the eigenvalues and eigen- 
vectors of Equation (18), we first simplify the solution by omitting the 
scale factor a./a  (1-p 2)e t    since the eigenvectors are independent of 

t c  c  c c 
this scale factor. We then determine the (normalized) eigenvalues and 
their corresponding eigenvectors. The results of this analysis are sum- 
marized as follows: 

1. The (normalized) eigenvalue Xx = etY (1-p
2) has the eigenvector 

hi = (19) 

2. The remaining (normalized) eigenvalues X2, X3 are found to be 

X, = 0.5 4P Vt     pcpt y/z
P P+ + r2 + r2 

t c    Kc t       t       c 

It f+9   P*   +   f*.   +   f tKCKt t C 
(20) 

10 



X, = 0.5 e T f.   4p2 + 4P
? 

c t Kt   yc I I   A. P    Pi. c t  KCKt t c 
+ r2 + r2 

cKt   t   c 

• 2/r /Y.p P. + r. + 
v    cv    tKcKt  t 

(21) 

Thus the three eigenvectors obtained for the above matrix are of the form 

hi = , h2 = , h3 = (22) 

where the parameters ßz and ß3 are given by the expression 

'2.3 = + 

2T 1. p. - 2/7 r.p 
c/ tKt  y c tKc 

(23) 

The optimal polarimetric matched filter corresponds to one of the three so- 
lutions in Equation (22); in particular, it corresponds to the solution de- 
fined by the maximum of the three eigenvalues \1( \2, \3. Thus the polari- 
metric matched filter is one of the three possible linear combinations of 
the polarimetric measurements, namely 

(i) HV 

(ii)   y2 = HH + ß2VV 

(iii)  y3 = HH + ß3VV 

(24) 

To gain further insight into the above solution, we will consider the 
behavior of the solution for the cases ß = ±1. These solutions are related 
to simple types of radar reflectors. For the special case when 1.-1    -  1, 
the optimal polarization combinations become 

(i)   Yi = HV 

(ii)   y2 = HH + VV (25) 

(iii)  y3 = HH - VV 

11 



These three solutions correspond to the following simple target-in-clutter 
situations 

(i)    HV is the polarization measurement that has the maximum signal 
return for a dihedral reflector oriented at ±45° relative to 
the horizontal. 

(ii)   HH + VV is the polarization measurement combination that has 
the maximum signal return for a trihedral reflector. 

(iii)  HH - VV is the polarization measurement combination that has 
the maximum signal return for a dihedral reflector oriented 
horizontally or vertically. 

12 



5. ALTERNATIVE DETECTION ALGORITHMS 

Sections 3 and 4 discussed two approaches (the optimal polarimetric 
detector and the polarimetric matched filter) to detecting targets in clut- 
ter, feoth of these approaches are dependent on the parameters of the tar- 
get and clutter classes. There are other approaches to detecting targets 
in clutter that are independent of the parameters of the target and clutter 
classes. These detection algorithms are suboptimal because they ignore 
some of the polarimetric information. We will consider several of these 
methods. 

The first scheme (used extensively in various radar applications by 
numerous researchers) processes the complex radar return by computing the 
polarimetric span according to the relation 

y = | HH | 2 + 2 | HV | 2 + | VV | (26) 

The span detection statistic makes use of the total power in the polari- 
metric return and has the property of being invariant with respect to the 
polarization basis used by the radar. The span is actually a suboptimal 
quadratic detector, since it is obtained from the simplified algorithm 

y = (HH*, HV*, VV*) 
1 0 0 HH 
0 2 0 HV 
0 0 1 VV 

(27) 

Note that the span detector does not make use of the polarimetric phase 
(* HH 0VV). Since the span detector utilizes only the polarimetric ampli- 

tude information, using it will provide some insight from the comparison of 
performance results for the various algorithms as to the usefulness of po- 
larimetric phase in our target detection application. We will also con- 
sider single polarimetric channel radars (specifically, HH, LL, and LR) and 
will compare the performance of these simpler algorithms to that of the 
more complex algorithms. Finally, we will evaluate the performance of a 
single circular transmit, dual circular receive radar system. This scheme 
makes use of both LL and LR polarimetric returns and we will compare the 
performance of this system to the performance achieved using the full PSM 
system. 

13 



6. PRODUCT TARGET AND CLUTTER MODELS 

The previous sections presented a number of polarimetric and non- 
polarimetric detectors, namely, 

1. The optimal polarimetric detector (OPD) 
2. The polarimetric matched filter (PMF) 
3. The span detector 
4. Single-channel (non-polarimetric) detectors 

This section develops more realistic target and clutter models; these 
will be used in the next section to evaluate the detection performance of 
these algorithms and their sensitivity to non-Gaussian distributions of 
targets and clutter. 

Until now we have assumed a homogeneous clutter background; as a re- 
sult each clutter pixel in the scene had the same average polarimetric 
power and the same covariance between the polarimetric returns. Also, we 
assumed the target-plus-clutter samples to be from a single Gaussian PDF 
(probability density function) with a constant average power and covari- 
ance.  It is more realistic to assume that (a) the clutter background is 
spatially nonhomogeneous, and (b) the target returns vary with aspect 
angle. To this end, in this section we postulate random polarimetric 
target and clutter models consistent with these more realistic assumptions. 
Specifically, we postulate random polarimetric target and clutter models 
having a product-model structure. This enables us to evaluate the effects 
of spatial variability of clutter and aspect angle variability of targets 
on the performance of the optimal polarimetric detector, the polarimetric 
matched filter, and the other, simpler detectors. To compare these detec- 
tors, we also need an optimal likelihood-ratio detector for the product 
models of targets and clutter. Therefore, we also derive the exact PDF for 
the product model polarimetric feature vectors and implement the likelihood 
ratio detector for the product model problem. 

Since we are interested in a product model for both targets and 
clutter, we take the model to be of the form 

y. = W (28) 

where /ä  represents an arbitrary scale factor. Our basic assumptions are 
(1) that the feature vectors X have a specified covariance matrix X and (2) 
that the vectors X are scaled according to some random variable /ä.    This 
defines our product model for polarimetric data measurements and represents 
a simple extension of the single-polarimetric-channel product models of 
targets and clutter derived in Reference 1. Determining the PDF of random 
vector ^ is straightforward and proceeds as described below. 

15 



For a given value a, we have 

E{y/a} = ^E{X} = 0 (29) 

COV {y/a} = al (30) 

Since the vector X is assumed to be complex-Gaussian, the conditional PDF 
of random vector y is also complex-Gaussian 

fW«> = ^nrT77 exp " (31) 
•"  « I 2.1    (  «  ) 

Next, we compute the unconditional PDF of random vector y which is obtained 
from the integral 

f(y_) = HC*/«) P(«0 da (32) 
0 

where p(a) is the PDF of the scalar product multiplier.  In References 8, 
9, and 10, a Gamma (or chi-square) distributed cross-section model was 
assumed having density 

PW - i ^Y"1 -J- «P I. A (33) 
a \ay T(v)     (  a^ 

In this two-parameter cross-section model, v is the order parameter and a 
is related to the mean radar cross-section. This has been shown [8, 9, 10] 
to yield the K-distribution for single polarimetric-channel ground clutter 
and sea clutter. We have shown that this distribution is a reasonable 
model for both radar ground clutter and targets similar to that data col- 
lected using the HOWLS [1] radar. We will apply this cross-section model 
to the polarimetric feature vector problem and will show that this leads to 
a generalized K-distribution for the PDF of random vector y. Substituting 
Equations (31) and (33) into Equation (32), we obtain the result 

f(y_)  = -Y^  /" a"^"1 exp  j-  ayY'yj exp {- ±-\ da      (34) 
ir a T(v) | I|  0 { '    (oca) 

Using tabulated integrals from Reference 11, we obtain the result 

f(y_) = "m—,—trr <35) 
wVr(v)|z|  (äyY^)(n"v)/2 

16 



Given this exact PDF for the product model characterization of targets and 
clutter, we next obtain the corresponding optimal log-likelihood ratio de- 
tector. Omitting the details, we obtain the distance measures D«.. (y) and 

oc(y) t+c 

/ A7 
D^y) = (v.-n) In (d*/2a.) + In Ky h 

\ J     2a. 

- lnr(vi) - In | Xi | - v. In ä. (36) 

2   t -i 
where d.=y 1.    y ; i=c,t+c 

The optimal polarimetric detector for product-model targets and clutter 
determined by Equation (36) has the same form as Equation (11); i.e., the 
optimal test for the presence of a target is 

DC(*) - Ws) > ln TD <37> 
We will use this detector in the ideal situation—where the parameters (a, 
e, Y, p) and the target-to-clutter ratio are known exactly and the parame- 
ters (v, ä) are also known exactly. The performance of this detector 
therefore will provide an upper bound against which we can compare the per- 
formance of our other detectors. In this way, we may judge the relative 
degradation in performance which occurs when the detectors are designed for 
some nominal target and clutter parameters but tested against product model 
input data. 
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7. SENSITIVITY ANALYSIS OF POLARIMETRIC ALGORITHMS 

In the previous sections, we derived polarimetric and non-polarimetric 
detectors for homogeneous (Gaussian) target and clutter statistics. In 
this section, the actual test inputs will be assumed to have a product 
model structure, and the sensitivity of the detectors to the effects of 
clutter spatial variability and target aspect-angle variability will be 
determined. 

7.1 ANALYSIS OF THE OPD - SINGLE-LOOK SOLUTION 

For the optimal polarimetric detector, we write 

y = xV'-Cj X + C (38) - v c  t+c' - 

where 
I VI 

C = In =—r - In Tn (39) 
I W I D 

Taking the approach of References 12 and 13, we evaluate the conditional 
characteristic function of random variable y: 

WJW> = /••••/ exP {MX^C-CJ X + C)} exp f = } dX 
j'a -•>  -•• i-  L i_ a      (40) 

n n | „ I 
IT a | X | 

The above expression implies that we have designed the detector using nomi- 
nal X.  and X for our target-plus-clutter and clutter classes, but are 

testing the algorithm with measurement data that have a product model struc- 
ture by appropriately selecting X and a. For now, however, we assume a 
given a and evaluate the exact characteristic function to be of the form 

<t>   , (jw) = eJwC n  (41) 
V«U        i=1 (l-j2aX.w) 

where the eigenvalues \lt  X2, X3 are obtained from the simultaneous diago- 
nal ization of the matrices 

X-1 - *;;c and I"1 (42) 

A FORTRAN program which computes the eigenvalues \lt  X2, and X3 is included 
in the Appendix. The eigenvalues are given as analytical closed-form ex- 
pressions; these expressions were obtained using MACSYMA [14]. 
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Expanding Equation (41) by partial fractions yields 

- JwC W-> • ^ l (i^ö (43) 

where the residues A. are simple functions of \lt  X2, and X3. Taking the 

inverse transform yields the conditional probability density 

V«(y) = Ji Aifi(y) (44) 

e-JwC 

where f*(y) - F 
^ aX.w) 

Detection and false alarm probabilities are obtained by integrating: 

PD/FA(«) = Q  f(y/«)do (46) 

The result is the sum of three integrals 

wa) • I Ai pi(«) <47> 
where 

i=l 

P.(a) = 1 - expJ-^U ;  X. > 0, C < 0 

P.(a)  = 0 

P^a) = exp . 1   c 

P^«)  = 1 

; X. > 0, C > 0 

;  X. < 0, C > 0 

; X. < 0, C < 0 

(48) 

The above expressions (47) and (48) are valid for any particular value of a. 
When a is modeled as a random variable (as it is for the product model), 
the detection probability is likewise a random variable. An average proba- 
bility is obtained by averaging with respect to a: 
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D/FA • EJWa)*= X, AiEipi(«)) 1=1 
(49) 

where 

Ea{Pi(«)} = 1 

Ea{Pi(*)} = 0 

EJP1<«>1 ' 

MP1^} = 1 

Ca 

2 X, 

v/z K [2 

- Ca 

2 X. 

aV r(v) 

v/z K 2 

-v 
a r(v) 

; Xi > 0, C < 0 

; X. > 0, C > 0 

; X. < 0, C > 0 

; Xi < 0, C < 0 

(50) 

The exact Pn/cA performance of the OPD for homogeneous target and clutter 

models is obtained from Equations (47) and (48) by setting the random multi- 
plier a = 1. The exact solution for the detection performance of the OPD 
involves calculation of the three eigenvalues Xt, X2, X3 from simultaneous 
diagonalization of the covariance matrices of Equation (42) above; this is 
true for both homogeneous and non-homogeneous inputs. The exact solution 
to this simultaneous diagonalization problem is given in the Appendix. 

7.2 ANALYSIS OF THE OPD - MULTI-LOOK SOLUTION 

We are interested in evaluating the performance of the OPD when two or 
more independent measurements of the polarimetric data, X, are processed in 
an optimal manner. In this subsection, the extension of the analysis to 
the multi-look case is presented. The assumptions we make are (i) that 
each observed polarimetric measurement vector from class u has the same c 
mean and covariance statistics (0, I ) and (ii) that each polarimetric 

measurement vector from class w.. has the same statistics (0, I. , ). With 
t+c -  t+c 

these assumptions, it is easy to show that the likelihood ratio test for 
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m independent observations is equivalent to sequentially processing each 
observed vector X., i=l,2,...m in the single-look quadratic classifier [15] 
The single-look detection statistics y. are then summed and compared with 

the detection threshold T^. Finally, since the characteristic function of 

a sum of independent random variables is the product of the individual 
characteristic functions, we obtain for the m-look case 

y/«u ' i=1 (l-j2aX.w) 
m (51) 

From this, one may obtain the exact formulas for detection and false alarm 
probabilities. The solution is lengthy and only the final results will be 
given here. Using the partial fraction expansion technique of Reference 
16, we obtain the solution 

,(•) (m) p(m) 
D/FA<«> = I    J Ai£ (52) 

where 

where 

p(m) 
ril 

p(«n) 

,(«n) - 
11 

,(m) - 
il 

«uw 

1-GU(«) 

X. > 0, c < 0 

Xi > 0, c > 0 

X. < 0, c > 0 

X. < 0, c < 0 

xl-l -X/2 

1Jt     J-C/aX. 2Ä(Ä-1)! 

(53) 

(54) 

22 



and 

Ai£ = 

("2Xi)
J 

(m-£)!    n (-2X.) 
k=l 

m-£ /m-V 

m   n=0 \ n 

[(-m-n+l)(-m-n+2) (-m)][(-2m+£+n+l) (-m)] 

1 
2ÄT ZT 

m+n 

where  i.  = modulo3(i) + 1 

i? = modulo3(i+l) + 1 

1 
2x7 2X 

h 

2m-£-n 
(55) 

Finally, when the test inputs have the product multiplier, a, which is 
characterized by the Gamma distribution of Eq. (33), we take the expectation 
with respect to this variable and obtain 

where 

and 

>-\ 
'&'•>! • J, i >,.'. p(m) 

i£ 

;    X.  > 0,  c < 0 

;    X.  > 0,  c > 0 

4ft}|= E«!G^("'i 

;    Xi < 0,  c < 0 

£-1 

ävr(v) k=o 2k_1k! 
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7.3 ANALYSIS OF THE PMF - GENERAL SOLUTION 

Compared to the analysis of the OPD, discussed above, analysis of the 
matched filter algorithm is simpler because the algorithm is linear. We 
will briefly summarize here the solution for the multi-look case. 

The output of the filter is a complex-Gaussian random variable com- 
prised of the optimal weighted sum of the HH, HV, and VV data. This output 
is noncoherently detected and summed prior to being compared with the de- 
tection threshold TQ. Mathematically, the algorithm is represented as 

m   .   2 

y • X   h\ I   > TD (59) 
k=l   K     u 

Random variable y is chi-square, since it is the sum of m-independent expo- 
nential variables; therefore, in order to calculate the detection perfor- 

mance of the algorithm, we need only compute E{ | h X | *}. We obtain 

\        \ 
(60) 

h'X    = ad2(h) 

where d2(h) = hfX h 

and a is the product multiplier 

The conditional detection and false alarm probabilities, for a given 
value of the multiplier, a, are 

PW (B). V VJIW exp . _yj 
U/hA k=0        k! o dz(h)i 

As with the OPD, the homogeneous target and clutter case is obtained by 
setting a = 1 in the above expression. 

When the product multiplier is modeled as a Gamma random variable with 
parameters {(v., a.) i=t+c,c}, the average detection performance is calcu- 
lated to be     n 

k/ _\(v-k)/2 
2  m-1 (T /d2(h)) 1   a \ 

E*W-H = — i —— — 
«r(v) k=0   k!    \d2(h)/ 
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7.4 ANALYSIS OF SUBOPTIMAL DETECTORS 

Two suboptimal polarimetric detectors which are under investigation 
use simpler detection statistics based on the polarimetric span ( | HH | 2 

2 | HV | 2 + | VV | 2) and the single channel, | HH | 2. Analysis of each of 
these algorithms is a special case of a previous analysis. The single 
| HH | 2 channel detector is a special case of the matched filter. Its de- 
tection performance is evaluated by letting 

hf = (1 0 0) (63) 

in Equations (61) and (62). 

Similarly, the detection statistic based on the polarimetric span is 
a special case of the OPD. Evaluation of its detection performance is easy 
because this detector is quadratic and of the form 

y = x* X + C  > 0 

Thus, we modify Equation (40) to obtain the following: 

1 0 0 
0 2 0 
0  0  1 

(64) 

*y/a(jw) = /•••/ exp jjwX 
1 0 0 
0 2 0 
0  0  1 

X + C exp 
-xV'x 

dX (65) 

and use our previously developed solution to evaluate detection performance 
for this algorithm. 
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8. DUAL CHANNEL LL, LR DETECTION ALGORITHMS 

Previous sections presented descriptions of detectors which used the 
full PSM (in a linear HH, HV, and VV polarization basis). An interesting 
alternative to the use of the full PSM for detection of targets has been 
proposed, namely dual channel LL, LR detection algorithms. In this scheme, 
left circular polarization is transmitted and both LL and LR polarizations 
are received simultaneously. As was done previously for algorithms using 
the full PSM, a number of algorithms for processing the LL and LR data will 
be discussed: (1) the optimal detector using both LL and LR data, (2) a 
matched filter detector using the LL and LR data, and (3) suboptimal detec- 
tors which use only the LL and LR power; one uses LL only, one LR only, and 
one sums the LL and LR power. 

We describe the polarimetric feature vector comprised of the complex 
LL and LR returns by 

Z = 
LLi + JLLq 

LR. • jLRq 

LL 

LR 
(66) 

Note that to be consistent with our previous definitions and for purposes 
of comparing results with the OPD, we express the LL and LR returns in 
terms of the linear basis by 

Z = T 
HH 
HV 
VV 

where T = 
0.5, j, -0.5 

0.5j, 0, 0.5j 

(67) 

From the polarization covariance matrix in the linear basis given by (3), 
the covariance matrix of Z is found to be 

2    = - z      4 

l-2Re{p/r}+r+4e 2Im{P/Y}-j(l-t) 

2Imfpy/?}+j(l-r) l+2Re{pff)  + T 
(68) 

The optimal detector using LL and LR data can be derived in the same 
manner as the OPD. That is, the optimal detector for LL and LR data, 
assuming that the feature vectors are jointly Gaussian with zero mean, is 
one which applies the test 

X- 

-1 
Z + In > In Tr 

-t+c. 
(69) 

_t+c 
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where l- 
•t+c 

is the covariance matrix of the target-plus-clutter vector 

Z  , which is defined by 

where 

*t+c = k + h 

H+c   Lt        Lc 

(70) 

(71) 

The feature vectors Z comprised of LL and LR data are zero-mean and 
complex-Gaussian because they are obtained through the linear transfor- 
mation (67) and because the feature vectors X comprised of HH, HV, and VV 
data were assumed to be zero-mean and complex-Gaussian. 

The calculation of the performance of this detector, assuming the prod- 
uct target and clutter models described previously, is very similar to the 
calculation of the OPD. For the single-look case 

W«> = 4 WW (72) 

where E{P.(a)} is given by (50) where the eigenvalues (Xi X2) are obtained 

by the simultaneous diagonal ization of (l~7    -  5Ü \  and 1-,  , the covariance 
\ c   t+c/ 

matrix of the test vector. For the multi-look case 

^A<«>i 
m 
1    A 

i=l £=1 
lP(m) 

U a i£ (73) 

i Eajp(jH   is given by (57) and  (58) and 

(-2X.)J 
[-2m+£+l]  [-2m+£+2]---[-m] 

"« 
(m-A)! n    (-2X.)' 

k=l K 

1 l 

a, nn 

2m-£ 
(74) 

where ij = moduloz(i) + 1 

In Section 4, a polarimetric matched filter was derived using the full 
PSM. In a similar manner, a matched filter detector which optimizes the 
target-to-clutter ratio at the filter output can be defined using LL and LR 
data. As was shown for the detector using the PSM, the filter which maxi- 
mizes T/C is the eigenvector which corresponds to the maximum eigenvalue of 
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The performance of the matched filter that uses LL and LR data 

can be calculated in the same fashion as for the matched filter that uses 
HH, HV, and VV data [see Equations (59) through (62)]. 

One suboptimal algorithm we studied calculates the sum of the powers 
in the LL and LR channels 

y = I LL | * + | LR | (75) 

Like the span detector, this algorithm is a suboptimal quadratic classifier 
since the detection statistic y can be obtained from 

= [LL* LR*] 
LL 
LR 

(76) 

The performance of this algorithm can be determined in the same manner as 
the performance of the span detector using the PSM. 

Finally, since the LL and LR responses can be determined from a linear 
combination of the HH, HV, and VV returns as shown in Equation (67), the 
performance of the | LL | only or j LR | only detectors can also be determined 
using Equations (61) and (62). 
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9. ALGORITHM PERFORMANCE PREDICTIONS 

The information presented in the previous sections includes the fol- 
lowing: (1) a discussion of a number of detection algorithms, (2) develop- 
ment of homogeneous (Gaussian) and non-homogeneous (non-Gaussian) product 
target and clutter models, (3) derivations of the formulas necessary for 
evaluating the performance of various detectors for: single-look and 
multi-look cases, and for homogeneous and non-homogeneous targets and clut- 
ter. This section predicts the performance of the various detection algo- 
rithms in different situations. It does so by using parameters {a,  e, T, 
p) from measured target and clutter data to construct polarization covar- 
iance matrices of targets and clutter. These covariance matrices are used 
to calculate predicted detection performance of the various detectors. The 
subjects discussed in this section are 

1. OPD, Span and | HH | z Performance Predictions 
2. PMF Detection Performance Predictions 
3. Detection Performance Using Circular Polarization 
4. Discrimination Performance of the OPD 

The performance predictions presented in this section of the report 
are based on polarimetric measurement data from typical ground targets and 
meadow clutter. Detection performance predictions presented in this sec- 
tion are for an armored target (target 1) versus clutter. Target discrimi- 
nation results presented are for target 1 versus target 2 (a truck). 

The polarimetric parameters of these targets and clutter are presented 
in Table I. 

TABLE I 

Polarimetric Parameters of Targets and Clutter 

a e r off 

TARGET 1 58.5 0.19 1.0 0.28 

TARGET 2 618.3 0.02 1.1 0.83 

CLUTTER 4.75 0.18 1.6 0.63 

9.1 OPD, SPAN, AND | HH | 2 PERFORMANCE PREDICTIONS 

This section compares performance predictions of three different de- 
tectors; (1) the optimal polarimetric detector (OPD) which uses all the in- 
formation contained in the PSM, (2) the polarimetric span which uses the 
amplitude information but not the phase information in the PSM, and (3) 
the single-channel | HH | z detector which is the simplest radar detection 
scheme. This is the type of detector used in the HOWLS [1] program. 
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Figure 1. Algorithm performance comparison vs T/C ratio 
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Single-Look Predictions: We have compared the performance of the OPD 
with the performance of both span and single-channel | HH | 2 algorithms. 
Both OPD and span processing require two pulses per look, whereas | HH | 2 

processing requires only one. A fair comparison among the three algorithms 
requires the use of the same number of pulses. Therefore, we assumed that 
(1) the "extra" pulse for | HH | z processing would be used to provide a sec- 
ond, independent sample at a second frequency, and (2) the two independent 

| HH | z samples were noncoherently averaged. 

For single-look processing with homogeneous targets and clutter, 
Figure 1 shows that the OPD outperformed span processing; this is to be ex- 
pected, since the OPD uses all the polarimetric information in an optimally 
weighted fashion. The | HH | z processing also outperformed span processing, 
even though span processing uses all three polarimetric amplitudes; presum- 
ably this is due to the use of two independent samples in the | HH | 2 pro- 
cessing. 

The OPD performed somewhat better than | HH | 2 processing. However, 
achievement of this improvement in detection performance requires exact 
knowledge of the target-to-clutter ratio as well as the target and clutter 
covariance statistics, since the optimal weighting coefficients are com- 
puted from this information. Since these target and clutter statistics are 
difficult to predict a priori, implementing the OPD in a real system would 
be difficult. 

Contribution of Polarimetric Phase Information: The contribution of 

the polarimetric phase term, | HH | | VV | cos ($,,,, - *vv), in target detec- 

tion does not appear to be significant. In the first place, it can be 
shown that the distance measures of Equations (12)-(14) are dominated by the 
radar cross-section terms ( | HH | 2 , | VV | 2, | HV | 2). Another way to show 
this is to evaluate detection performance using amplitude-normalized fea- 
ture vectors. The optimal processor of normalized data (OPDN) [17] pro- 
vides the best possible performance for normalized Gaussian feature vec- 
tors. The optimal performance for the normalized data is shown in the 
curves of Figure 2. A comparison of the performance of the optimal pro- 
cessor for normalized data (Figure 2) with that of the OPD which processes 
unnormalized data (Figure 1) clearly shows that it is the polarimetric am- 
plitude information which provides the good detection performance results 
of the OPD. 

Multi-Look Processing: Figure 3 summarizes the performance predic- 
tions for the 6-dB target-to-clutter ratio case using multi-look process- 
ing for homogeneous targets and clutter. | HH | 2 detection performance is 
again superior to detection using the span statistic. An optimally 
weighted combination of the | HH | 2, | VV | 2 and | HV | 2 amplitudes might im- 
prove performance of the span detector somewhat; however, the span perfor- 
mance is bounded above by the OPD, and HH processing is not significantly 
worse than OPD performance. 
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Product Model Effects: The results of Figure 3, which correspond to 
multi-look processing of statistically independent PSM samples, are very 
optimistic because idealized homogeneous target and clutter models were 
used. With more realistic product model representations of targets and 
clutter, we obtain performance results for HH processing which are con- 
sistent with those achieved using the HOWLS [1] radar data. 

The curves of Figures 4 and 5 show more realistic algorithm perfor- 
mance predictions based on the product target and clutter models. These 
figures show the performance of the OPD designed for homogeneous target and 
clutter models but tested against nonhomogeneous product target and clutter 
model inputs. Comparing Figure 4 with Figure 1 (and Figure 5 with Figure 3) 
shows the deleterious effect of nonhomogeneous targets and clutter on the 
performance of all three algorithms. For example, for Pp. = 10" the de- 

tection performance of the OPD with 10-dB target-to-clutter ratio is de- 
graded from 90 percent to less than 70 percent. Similar reductions can be 
observed for the other algorithms and at other target-to-clutter ratios. 

Furthermore, the performance improvement achieved through multi-look 
processing is considerably reduced when the more realistic (nonhomogeneous) 
target and clutter models are used (compare Figure 5 with Figure 3). Thus, 
the benefits of frequency averaging of independent PSM samples are reduced 
due to nonhomogeneity of the target and clutter models. These observations 
are consistent with results obtained previously using HOWLS data [1]. 
Also, the performance advantage of the OPD relative to | HH | 2 processing is 
reduced in this case since the OPD detector was designed to be optimal for 
homogeneous target and clutter models. 

Sensitivity to Product Model Parameters: In a previous study [1], we 
showed that the nonhomogeneity of ground clutter and aspect angle variabil- 
ity of targets were dominant factors in the reduction of detection perfor- 
mance of a single-channel | HH | z detector; that is, the sensitivity of de- 
tection performance to the target and clutter parameters, a and a , is 

quite severe. To verify that this effect also applies to polarimetric de- 
tection algorithms we have evaluated the performance of the OPD over a 
reasonable range of a (1, 1.5, 2, 2.5, and 3 dB). Figure 6 shows the OPD 

performance predictions for single-look and 4-look processing. The top 
curves (denoted as a = -~) correspond to the homogeneous clutter model and 

are included as an upper bound on performance. From the curves, it is 
clear that detection performance is degraded rapidly with the increasing 
nonhomogeneity of clutter. 

We have also evaluated the performance of the OPD over a reasonable 
range of a. (1, 2, 3, and 4 dB). Figure 7 shows the resulting performance 

predictions. From these curves, it is seen that the single-look results 
are less affected by a change in a. than the 4-look results. Nevertheless, 

there is, in general, a fairly strong dependence on a . 
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Comparison of OPD with Product-Model Likelihood Ratio Test: The 
product-model likelihood ratio test is the optimal detector for product- 
model targets and clutter. This algorithm was defined in Equation (37). 
Since the OPD (designed for homogeneous models) exhibits degraded perfor- 
mance when tested with nonhomogeneous models, it is of interest to compare 
the performance of the OPD with that of the LRT algorithm. Our studies 
indicate that over the range of parameter variations of interest the OPD 
performs almost as well as the LRT algorithm. 

9.2 PMF DETECTION PERFORMANCE PREDICTIONS 

The OPD discussed in previous sections is the optimal processor assum- 
ing Gaussian statistics; however, it is nonlinear, and requires a priori 
knowledge of both the target and clutter covariances and the target-to- 
clutter ratio. The PMF on the other hand is a linear processor which also 
requires a priori knowledge of the target and clutter covariances. How- 
ever, the PMF (a constant-coefficient filter) does not require a priori 
knowledge of the target-to-clutter ratio. 

This section presents the results of our polarimetric matched filter 
studies. We designed the PMF based on the target and clutter covariances 
specified earlier [see Equations (18)-(23)]. Evaluating the eigenvalues and 
eigenvectors of the matrix 1    I. , yields the following solutions: 

(i)   Xx = 12.78 *-* ht = 

(ii)  X2 = 7.54 <-• h2 = 

0' 
1 

_0. 

1 ' 
0 

3.6 

(iii) X3 = 15.58 •-»• h3 = 
1 " 
0 

-0.5 

The best PMF is, therefore, specified by solution (iii) above. We have 
compared the detection performance of this PMF with that of the single- 
channel | HH | 2 detector. One of our objectives was to make a direct com- 
parison of the PMF with the results of the HOWLS radar [1], so for these 
comparisons we have used product target and clutter models with parameters 
at = 3 dB, ac = 2 dB and (T/C) = 6 dB. Equations (61) and (62) were used 

to obtain the performance predictions. Figure 8 summarizes the results, 
showing detection performance of the PMF with 1, 2, 4, 8, and 16 indepen- 
dent polarimetric samples processed. Since these polarimetric samples 
require transmitting 2, 4, 8, 16, and 32 radar pulses, we show the com- 
parison with | HH | 2 processing using these same numbers of transmitted 
pulses. 
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Figure 8. Algorithm performance comparison 
[T/C = 6 dB, product models (a = 3 dB, a = 2 dB)]. 
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The PMF (with an equivalent number of transmitted pulses) does not 
perform as well as | HH | 2 processing until we process about 8 independent 
fully polarimetric measurements. With 8 independent looks (16 pulses 
transmitted) the two algorithms provide essentially the same performance. 
The performance predictions with 16 pulses transmitted agree closely with 
the HOWLS measurements (i.e., Pn ~ 50 percent and Pp. ~ 10" with 6 dB 

target-to-clutter ratio). As more independent looks are processed, the PMF 

begins to outperform the | HH | z detector. 

We have also made a performance comparison of the best PMF design with 
a detector using a circular transmit, circular receive | LL | 2 system.  It 
has been reported that this algorithm achieves a better target-to-clutter 
ratio than the linear transmit, linear receive | HH | 2 system. This is true 
because the even bounce | LL | z clutter return is less than the | HH | z clut- 
ter return, whereas the even bounce | LL | z target return is about the same 
as the | HH | 2 target return. Also, a single | LL j z measurement requires 
only 1 pulse transmission. Figure 8 shows that the even channel | LL | z de- 
tection performance is slightly better than the | HH | z detection perfor- 
mance. All three detectors are essentially equivalent in performance with 
16 pulses transmitted. 

9.3 DETECTION PERFORMANCE USING CIRCULAR POLARIZATION 

The performance of the algorithms which use | LL | z only and | HH | 2 

only (see Figure 8) indicated that the two polarizations necessary to 
construct the full PSM for purposes of implementing the OPD or the PMF may 
not improve detection performance significantly. Therefore, in this sec- 
tion we examine the performance of detection algorithms that use circularly 
polarized data. All of the detectors we study use a single circular 
transmit polarization. Specifically, the detection algorithms we examine 
are: (1) the optimal quadratic detector using complex LL and LR data, (2) 
a detector using the sum of the powers | LL | 2 + | LR | 2, (3) a matched 
filter using complex LL, LR data, and (4) detectors using either | LL | ? or 

| LR | 2 data. 

The curves in Figure 9 compare the results using the OPD, the optimal 
quadratic detector using complex LL and LR data, and the suboptimal detec- 
tor which uses the sum of the powers | LL | 2 + | LR | 2, for the situation 
where two pulses are transmitted (which is the minimum required by the 
OPD). The analysis used product-model target and clutter inputs. Figure 9 
shows performance predictions versus target-to-clutter ratio. Figure 10 
shows the detection performance of these same algorithms for a fixed 
target-to-clutter ratio of 6 dB, for 1-, 2-, and 4-look data, where each 
look consists of two transmitted pulses. These figures show that optimal 
processing of two independent measurements of complex LL, LR data provides 
better detection performance than the OPD (which requires two pulses to 
construct the PSM). They also show that the | LL | 2 + | LR | z detector 
(which, unlike the other two algorithms, requires no previous information 
concerning the target and clutter covariances or the target-to-clutter 
ratio) provides performance comparable to that of the OPD. 
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Figure 11 compares the performance of four detection algorithms which 
require only one transmit pulse per look: (1) the LL, LR matched filter, 
(2) the | LL | 2 + | LR | 2 detector, (3) the | LL | 2 only detector, and (4) the 

| LR | z only detector. These curves indicate that the performance of the 

| LL | 2 channel-only detector compares well with that of the matched filter 
detector (which requires a priori knowledge of the target and clutter 
covariances). The | LL | 2 channel-only detector provides much better per- 
formance than the | LR | 2 channel-only detector. Not surprisingly, the 

| LL | 2 channel detector is also superior to the | LL | 2 + | LR | 2 detector 
(because the two channels are simply added without optimum weighting). 
Figure 11 shows that the best combination of polarization channels to use 
in a detector is dependent on the statistics (i.e., covariance matrices) of 
the particular target and clutter under study (recall that all the figures 
show results of detection studies of an armored target versus meadow 
clutter). The relative performance of the detectors shown in Figure 11 
might be different for different targets and/or clutter types. Obviously, 
the best combination of polarization channels is highly dependent on the 
covariance matrices of target and clutter. 

9.4 DISCRIMINATION PERFORMANCE OF THE OPD 

Once a target has been detected, it may be important to discriminate 
between different target types (e.g., tank versus truck). The collected 
polarimetric data for various targets may contain information as to the 
type of target being observed, which may be used by a polarimetric classi- 
fier to achieve discrimination. This section presents the results of stud- 
ies which used the OPD as a polarimetric classifier. 

In our discrimination studies, we used normalized feature vectors 
having unit length. This has the advantage of removing the product scale 
factor from the data, so that classifier design becomes independent of ab- 
solute radar cross-section. Only the relative amplitude differences be- 
tween the complex HH, HV, and W elements, and the polarimetric phase 
0,ju - 0ww. are used to discriminate among target types. Table II shows the 

average probability of classification error for the armored target versus 
the truck. The table includes results for various numbers of looks (i.e., 
various numbers of independent polarimetric measurements processed) and for 
target-to-clutter ratios of 0, 3, 6, and 10 dB for target 1 versus clutter. 
In each case, the target-to-clutter ratio for target 2 versus clutter is 
10 dB higher due to the larger radar cross section of target 2 (see Table 

I)- 

Table II shows the average probability of classification error for the 
armored target versus the truck. 
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TABLE II 

Probability of Classification Error (%) 

Number of Looks 

T/C Ratio 1 2 4 8 

10 dB 24.6 17.6 10.6 5.2 

6 dB 26.0 19.2 12.0 6.2 

3 dB 27.8 21.0 14.0 7.4 

0 dB 30.2 24.3 17.1 10.0 

The results shown in Table II suggest that polarimetric information is use- 
ful in discriminating between target types. However, to achieve reliable 
performance requires multi-look processing with reasonably high (6-10 dB) 
target-to-clutter ratios. Also, good discrimination can only be achieved 
for targets exhibiting discernible differences in polarization character- 
istics (e.g., the values seen for e and p in Table I). 

It might be possible to separate these two specific targets on the 
basis of absolute radar cross-section (RCS) only. However, absolute radar 
cross-section is not used in this classifier because (1) RCS can be easily 
modified, and (2) to use absolute RCS would require very accurate absolute 
calibration of the test data with respect to the training data. The nor- 
malized polarimetric classifier does make use of the relative amplitudes in 
the HH, HV, and VV channels. 
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10. SUMMARY 

This report summarizes a study of target detection algorithms which 
use polarimetric radar data. A model which accounts for the spatial nonho- 
mogeneity of ground clutter and the aspect angle variability of targets was 
developed and the performance of various algorithms evaluated. 

Our study found that the additional information provided by the full 
PSM measurement, even when processed in an optimal fashion, does not aid 
significantly in target detection. That is, a radar which transmits and 
receives a single polarization (e.g., HH or LL) will obtain almost as good 
performance as one which measures the full PSM. Also, to achieve the addi- 
tional performance improvement from the OPD (which uses the full PSM), one 
must have exact knowledge of the target and clutter covariances, as well as 
the target-to-clutter ratio. When these covariances are not known, the 
single-polarimetric-channel detector provides the best performance. There- 
fore, independent, multi-look, single-polarization algorithms appear to be 
the best approach to target detection. 

Our studies showed that when a single polarization is used, | LL | 2 

(even bounce) circular polarization provides slightly better performance 
than | HH | 2 (linear) polarization. However, the clutter data base used in 
these studies was limited, and further study of this problem using various 
types of clutter (for example, snow clutter) will be necessary. 

Once a target is detected, information contained in the PSM may be 
useful for discriminating between target types (e.g., armored target ver- 
sus truck). Our preliminary results indicate that, for discrimination to 
be effective, many independent looks at the target are required and the 
target-to-clutter ratio must be fairly high. This area will require fur- 
ther study using a variety of target types. 

Another area in need of further investigation is the development of 
more realistic statistical target models. Some targets have different 
polarimetric properties at different aspect angles. Thus a more realistic 
statistical target model would be one which uses different covariance 
matrices to characterize a target at different aspect angles. 
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APPENDIX 

This appendix provides the solution for the calculation of the eigen- 

values of the matrix product l3(l\ - l\ ). Equivalently, we may simulta- 
neously diagonalize the following two matrices: 

i! - I2 (A-l) 

-1 
-I (A-2) 

When this is done, the diagonal elements of the matrix A are the desired 
eigenvalues. These eigenvalues are required in the performance evaluation 
of the optimal polarimetric detector. In this appendix, we assume the 
polarimetric measurement vector to be a real, 6-dimensional zero-mean, 
Gaussian vector 

X = (HHr HHQ, HVj, HVQ, Wj, VVQ)' (A-3) 

with real 6x6 covariances X,, lz , X3 of the form 

h = 
'HH 
2 

1                  0 

0                  1 

0                0 

0                0 

/TRe(p)      Vrlm(p) 

/?Im(p)      /?Re(p) 

0                  0 

0                 0 

e                 0 

0                        € 

0                 0 

0                 0 

/TRe(p)    ^rlm(p) 

-/?Im(p)    /?Re(p) 

0                0 

0                0 

r                 0 

0              r 

_ 

; i=i,2,3 

(A-4) 

This solution is general in that we have assumed the correlation parameter, 
p, to be complex. The real 6x6 matrix has 3 eigenvalues, each of multi- 
plicity two. We present the analytical solution for these eigenvalues Xlf 

3 in the following FORTRAN subroutine. X2 , X 
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subroutine eigvals(el,gl,rl,sl,e2,g2,r2,s2,e3,g3,r3,s3) 

c  
c 
c      This program generates the eigenvalues of an input matrix in 
c      the form (sigma.3)x(sigma.1.inverse - sigma.2.inverse) where 
c       sigma.1, sigma.2, and sigma.3 are all 6x6 covariance matrices 
c      whose elements are determined by the parameters contained in 
c      the input data file.  The equations for the eigenvalues were 
c      obtained using MACSYMA. 
c 
c  

parameter(inlu=12,outlu=21) 

C        DATA STRUCTURES 
double precision el,e2,gl,g2,si,s2 
double precision 11,12 ,13,14,15,16,lam(3) 
double precision al,a2,a3,bl,b2,b3,denl,den2 
double precision e3,g3,s3 
complex*16 rl,r2,r3 

C        CHARACTER STRINGS 
character*50 infil,filname,gettext 

al=(gl**0.5)*dreal(rl) 
bl=(gl**0.5)*dimag(rl) 
a2=(g2**0.5)*dreal(r2) 
b2=(g2**0.5)*dimag(r2) 
a3-(g3**0.5)*dreal(r3) 
b3=(g3**0.5)*dimag(r3) 

denl=(gl-(bl**2)-(al**2))*sl 
den2=(g2-(b2**2)-(a2**2))*s2 

x=(gl/denl)-(g2/den2) 
y=(a2/den2)-(al/denl) 
z=(b2/den2)-(bl/denl) 
v=(l/denl)-(l/den2) 
w=(l/(el*sl))-(l/(e2*s2)) 

c Compute the eigenvalues of the matrix 
c       (sigma.3) x (sigma.1.inverse - sigma.2.inverse) 

Il=(s3*(x-sqrt(g3*(4*z**2+4*y**2-2*v*x)+a3**2*(4*v*x-4*z**2)+a3* 
1 (8*b3*y*z+4*x*y+4*g3*v*y)+b3*(4*x*z+4*g3*v*z)+b3**2*(4*v*x-4* 
2 y**2)+x**2+g3**2*v**2))+2*b3*s3*z+2*a3*s3*y+g3*s3*v)/2.0 

12=(s3*(sqrt(g3*(4*z**2+4*y**2-2*v*x)+a3**2*(4*v*x-4*z**2)+a3* 
1 (8*b3*y*z+4*x*y+4*g3*v*y)+b3*(4*x*z+4*g3*v*z)+b3**2*(4*v*x-4* 
2 y**2)+x**2+g3**2*v**2)+x)+2*b3*s3*z+2*a3*s3*y+g3*s3*v)/2.0 

13=e3*s3*w 

lam(l)=ll 
lam(2)=12 
lam(3)=13 
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